Mathematik-Brückenkurs an der FU Berlin (2/2) 👍 👎

Im Folgenden der Ablauf der zweiten Woche des Mathematik-Brückenkurses an der FU Berlin im WS14/15:

Montag

Abzählbarkeit

Um unendlich große Mengen auf Gleichmächtigkeit zu prüfen, haben wir die Abzählbarkeit einer unendlichen Menge definiert. Abzählbarkeit besteht, wenn eine bijektive Abbildung der natürlichen Zahlen in diese Menge existiert. Zur Herleitung diente uns Cantors erstes Diagonalargument. Eine Menge, für die keine derartige Abbildung existiert, bezeichnen wir als überabzählbar (Cantors zweites Diagonalargument).

Vollständige Induktion

Der Induktionsbeweis dient dazu, Allaussagen für alle natürlichen Zahlen zu beweisen. Hierzu wird zuerst der Induktionsanfang gesetzt und bewiesen, um darauf aufbauend die Gültigkeit für alle nachfolgenden Zahlen zu beweisen (Induktionsschritt). Die Aussage selbst wird als Induktionsvoraussetzung bezeichnet.

Dienstag

Summen- und Produktzeichen
  • Summenzeichen

    Wir haben endliche Summen eingeführt, die mit Hilfe des Summenzeichens, bestehend aus dem Index mit Startwert und dem Endwert sowie eines Folgegliedes der Reihe eingeführt. Wir haben Rechenregeln zur Multiplikation mit einer Konstanten, die Addition von Summen und die Indextransformation eingeführt. Die leere Summe wird zu 0 (neutrales Element der Addition) definiert.

  • Produktzeichen

    Das endliche Produkt wurde analog zu obiger Definition eingeführt, wobei das leere Produkt zu 1 (neutrales Element der Multiplikation) definiert wird. In diesem Zusammenhang haben wir ebenfalls die Fakultät einer natürlichen Zahl betrachtet.

Erweitertes Induktionsprinzip

Wir haben die vollständige Induktion erweitert, um den Induktionsanfang mit dem Wert 1 zu verallgemeinern.

  • Kardinalität einer Menge

    Die Kardinalität einer endlichen Menge bezeichnet deren Mächtigkeit und entspricht der Anzahl der Elemente.

Binomialkoeffizient

Wir haben zum Verständnis der (allgemeinen) binomischen Formel den Binomialkoeffizienten eingeführt.

  • Pascalsches Dreieck

    Zur Illustration der Berechnung der Werte der Binomialkoeffizienten haben wir diese in Form des pascalschen Dreiecks angeordnet. Hierbei entsprechen die Werte eines Binomialkoeffizienten der Summe der beiden darüber angeordneten Werte.

Zur Rückführung auf Bekanntes haben wir die binomische Formel mit dem Spezialfall 2 als Exponenten betrachtet.

Mittwoch

Kombinatorik

Wir haben den Begriff der Kombinatorik im Allgemeinen eingeführt.

  • Permutationen

    Unter einer Permutation versteht man eine bijektive Abbildung einer Menge auf sich selbst. Es handelt sich somit um die möglichen Anordnungen ihrer Elemente.

Wir haben außerdem den bereits eingeführten Begriff des Binomialkoeffizienten verwendet, um beispielsweise die Anzahl der möglichen Kombinationen im Lotto zu ermitteln.

Donnerstag

Körper der reellen Zahlen

Wir haben den Körper der reellen Zahlen als Grundlage der Analysis auf Basis von Axiomen eingeführt. Der Körper enthält die zwei inneren zweistelligen Verknüpfungen Addition und Multiplikation.

  • Axiome

    Axiome sind grundsätzliche Festlegungen, die nicht weiter bewiesen werden. Es gelten die Assoziativ- und Kommutativgesetze und das Distributivgesetz. Es existieren für Addition und Multiplikation jeweils ein neutrales (0 und 1) und ein inverses Element.

Weitere Inhalte waren u. a. die Ordnung und der absolute Betrag reeller Zahlen.




Dieser Eintrag ist Bestandteil einer Beitragsserie:


Projektverweise

Kategorien / Archiv  |  Übersicht RSS-Feed

Schlagworte

Suche